3. Glossar
Sieht man sich
die Zusammensetzung der Atemluft an, so besteht diese aus verschiedenen
Fraktionen (Anteilen):
Die Bestandteile der Atemluft: Die Luft besteht aus verschiedenen Einzelgasen, die sich verteilen wie im Folgenden gezeigt:
|
![]() |
Dabei leitet sich der Partialdruck ab vom Umgebungsdruck (Summe aus Luftdruck über dem Wasser + hydrostatischem Druck) unter dem das Gas steht und dem Anteil dieses Gases am Gesamtgemisch.
Beispiel: Befindet sich ein Taucher auf einer Wassertiefe von 40 m , so atmet er unter einem gesamten Druck von ca. 5 bar (ca. 1 bar Luftdruck + 4 bar Schweredruck des Wassers). Der Stickstoff mit seinem Anteil von ca. 78% (78/100 = 0,78) an der Luft steht daher auf 40 m Wassertiefe unter einem Partialdruck von 0,78 * 5 bar = 3,9 bar .
Der Partialdruck eines Gases lässt sich also errechnen zu:
p.p = f.g *
p.amb
p.p = Partialdruck
(partial pressure) des Gases
|
Die Wirkung eines bestimmten Gases auf den menschlichen Körper ist im Wesentlichen von seinem Partialdruck abhängig, wenn auch seine physiologische Wirkung in bestimmten Fällen vom zusätzlichen Vorhandensein anderer Gase (bzw. deren Partialdrücken) abhängen kann.
a) vom Partialdruck
des Gases
b) Von der Aufnahmefähigkeit
der Flüssigkeit für das Gas (Löslichkeit)
c) Von der Temperatur
der beteiligten Stoffe
Der Lösungsvorgang ist physikalisch betrachtet ein Diffusionsvorgang , d. h. ein Stoff der an einem Ort in hoher Konzentration vorliegt, hat das Bestreben, sich von diesem Ort weg zu einem anderen Ort zu bewegen, wo seine Konzentration niedriger ist und so einen Ausgleich herbeizuführen, ergo ist es das Bestreben des Stoffes überall eine gleich hohe Konzentration zu erreichen.
Beim Tauchen lösen sich alle Atemgase in den Flüssigkeiten der Gewebe des Körpers, besondere Bedeutung haben jedoch die sog. Inertgase , also jene Gase, die keine chemischen Reaktionen mit den Körper- und Gewebsflüssigkeiten eingehen (daher die Bezeichnung 'inert'), die aber physikalisch wirken können. Das wichtigste dieser inerten Gase ist der in der Atemluft mit ca. 78% enthaltene Stickstoff , bei künstlichen Atemgasgemischen auch Helium oder bei sehr exotischen Atemgaszusammenzusetzungen der Wasserstoff .
Fassen wir zusammen: Die Inertgase (also stoffwechselphysiologisch nicht aktiven Gase) beim Tauchen sind
Die gelöste Menge eines Inertgases in einem Gewebe hängt hauptsächlich ab von
Dieser Vorgang der Aufsättigung ist, wie die später zu beschreibende Entsättigung auch und wie bereits dargestellt, physikalisch betrachtet eine Diffussion Der Stoff sucht ein vorher vorhandenes Gefälle der Stoffkonzentration auszugleichen. Dieses Gefälle der Stoffkonzentration wird in der Physik auch als Gradient bezeichnet.
Wie alle Flüssigkeiten auch, haben diese Gewebe stark unterschiedliche Lösungsverhalten für Gase. Um die Betrachtungen zu vereinfachen, hat man den menschlichen Körper daher modellhaft in eine bestimmte Anzahl unterschiedlicher Gewebe unterteilt. An diesen Geweben wird in Ansätzen mathematisch-modellhaft nachvollzogen welche Vorgänge sich in der Realität abspielen. Je nach Dekompressionsmodell sind dies 1, 4, 6, 8, 16 oder noch mehr Gewebe deren Eigenschaften man mit Hilfe von mathematischen Konstanten definiert. ( Mehr... )
Die Gewebe, die den Stickstoff am schnellsten lösen, sind z. B. das Blut und die Nerven, mittlere Gewebe z. B. die Haut und die Muskeln, langsame Gewebe sind z. B. Knochen und Knorpel. Für jedes Gewebe hat man eine bestimmte "Sättigungshalbwertszeit" ermittelt, je kürzer diese ist, desto schneller ist eine Gewebestruktur mit dem Inertgas gesättigt.
Außerdem hängt die Löslichkeit von der Dichte des Gases ab. Leichte Gase (z. B. Helium) lösen sich schneller als massereichere Gase (z. B. Stickstoff). Andererseits lösen sich Gase unterschiedlich stark in Fettgewebe, sie verfügen über eine unterschiedlich ausgeprägte Lipophilie . Helium beispielsweise ist um ca. den Faktor 4 weniger liopohil als Stickstoff. Man erkennt also, dass sich das Verhalten des Gases in Bezug auf seine Lösung in einem Körpergewebe an vielen Faktoren determiniert.
Beim Entsättigen (also der Gasabgabe) entspricht der Druckgradient (Partialdruckunterschied) der Differenz des Partialdruckes des Inertgases im Gewebe zu dem des Atemgasgemisches. Auch dieser ist nach einer bestimmten Anzahl Halbwertszeiten nahezu Null.
Eine typische Sättigungskurve hat den unten gezeigten Verlauf. Man erkennt
a) dass nach ca. 8 - 9 Halbwertszeiten das Gewebe (bei gegebenem konstantem Umgebungsdruck) kein weiteres Inertgas aufnehmen kann. Der Sättigungszustand ist erreicht, und
b) dass nach jeweils
einer Zeitperiode (Horizontalachse) die gelöste Inertgasmenge
immer
die Hälfte des Restwertes der vorigen Zeitperiode ist.
Modellhaft dargestellt ist dieser Sachverhalt oben für 5 verschiedene Gewebe. Die blaue Linie entspricht dabei einen schnellen Gewebe (z. B. dem Blut), es erreicht die Sättigung schneller als alle anderen sog. Kompartimente (Modellgewebe). Die violette Linie entspricht dem langsamsten Gewebe dieser Kurvenschar.
Schnelle Gewebe mit kurzen Halbwertszeiten (z. B. Gehirn, Rückenmark, Nerven, Blut) | Langsame Gewebe mit mittleren Halbwertszeiten (Muskeln, Haut) und langen Halbwertszeiten (Knochen, Knorpel) |
|
|
Dieser Vorgang, wenn er ausreichend langsam abläuft, wird keine sog. Dekompressionskrankheit hervorbringen, sondern lediglich vom Auftreten sog. Mikrogasblasen begleitet sein , die allerdings keine krankmachende (pathogene) Wirkung entfalten. Mikrogasblasen sind gewissermaßen die Verkörperung ( Manifestation ) des aus den Geweben austretenden Inertgases, das der Lunge entgegenstrebt um aus dem Körper entfernt zu werden.
In der Lunge wird das anfallende Inertgas dann weitestgehend abgeatmet, wenn auch hier gewisse Mechanismen die Inertgasabgebae verlangsamen können.
Wird jedoch die Druckabnahme pro Zeiteinheit zu schnell durchgeführt, tritt zuviel Gas in einer bestimmten Zeit aus den Geweben aus und es bilden sich mehr oder weniger große Blasen, weil die große, momentan freigewordene Inertgasmenge nicht vom Ort des Entstehens abtransportiert werden kann. Gut durchblutete, sog. "schnelle", Gewebe haben daher eine geringere Tendenz zur Bildung von z. B. Stickstoffblasen, weil hier das Inertgas schnell weiter geleitet werden kann. In anderen, schlecht durchbluteten Geweben, wie z. B. Fettgewebe, sammelt sich einerseits wegen der höheren Löslichkeit von Stickstoff in Fett mehr Inertgas an, andererseits kann dieses Gas nicht ausreichend schnell abtransportiert werden. Daher ist Fettleibigkeit ( Adipositas ) ein Risikofaktor beim Tauchen.
Bilden sich jedoch große Gasblasen ( manifeste Blasen ), kommt es im Bereich der Blasenbildung zu örtlichen Gewebszerreissungen, was man z. B. an den Hautrötungen bei einer leichten Dekompressionskrankheit und den Schmerzen in den Gelenken, den sog. "'bends" beobachten kann. Diese weniger gravierenden Symptome der sog. Dekompressionskrankheit (sog. Typ I ) treten auf, wenn bestimmte Gewebe (Muskeln, Haut) mehr Gas abgeben müssen, als sie symptomlos tolerieren können.
Schwerere Symptome der Dekompressionskrankheit entstehen, wenn Gasblasen aus dem venösen System in der Lunge wegen ihrer großen Zahl und der damit einhergehenden Herabsetzung der Lungenfunktion und des Gasaustausches nicht abgeatmet werden können und in das arterielle System übertreten. Dort können sie wie ein Thrombus (Pfropfen) die Blutzufuhr zu lebenswichtigen Organen blockieren, so dass es hier nicht selten zu Nervenlähmungen, motorischen oder sensorischen Ausfällen oder im Extremfalle zum Tod kommt (sog. Typ II der Dekompressionskrankheit )
Alle Gewebe haben dabei, wie bereits geschildert, bestimmte Toleranzen gegen eine zu hohe Stickstoffaufladung (Gasspannung) und können einen bestimmten Gasüberdruck aushalten, ohne dass sich eine relevante Zahl und Größe von Gasblasen ausbildet. Dieser Gasüberdruck entsteht alleine deshalb, weil der Außendruck infolge Auftauchens kleiner wird, der Innendruck des gelösten Gases im Gewebe aber nicht zeitnah synchron folgen kann.
Schnelle Gewebe sind dabei toleranter gegen Übersättigung als langsame. Die Auftauchgeschwindigkeit muss stets so bemessen sein, dass die Übersättigungstoleranzen aller Gewebe eingehalten werden und nicht zuviel Gas auf einmal die Gewebe verlässt, so dass sich keine Blasen bilden können. Diese Ermittlung eines Austauchplanes, bei dem alle Gewebe unterhalb der kritischen Schwelle gehalten werden, ist die Basis der mathmematischen Dekompressionsrechnung.
Diese Blasen haben jedoch einen negativen Einfluss auf die Inertgaselimination in der Lunge selbst, d. h. die Abgabe von Stickstoff (oder Helium) durch die Lunge sinkt. Sie setzen also die Wirksamkeit der Lunge herab, man spricht in diesem Zusammenhang von einer Blockade des Lungenfilters . Ihre negative Wirkung auf die Inertgaselimination entsteht deshalb, weil sie die feinsten Blutgefäß in der Lunge zum Teil verstopfen können und daher den Gasaustausch in den Lungenbläschen (Alveolen) behindern.
Physiologische Eigenheiten können die Stickstoffabgabe verlangsamen:
Helium, das am häufigsten verwendete Inertgas bei künstlichen Atemgasgemischen, hat eine sehr viel geringere Masse als Stickstoff. Dadurch steigt die Diffusionsgeschwindigkeit des Gases in und aus den die Geweben an. Die Halbwertszeiten sinken. Bühlmann gibt an, dass die Halbwertszeiten für He um den Faktor 2,65 geringer seien als für Stickstoff.
Daraus resultieren im Wesentlichen zwei Sachverhalte:
In der Konsequenz heißt dies (bei reiner Atmung von He als Inertgas ohne N 2 -Anteil), dass a) mit der Dekompression früher begonnen werden muss und b) die maximale Aufstiegsgeschwindigkeit deutlich geringer ist, als beim Tauchen ausschließlich mit N 2 (Pressluft, Nitrox).
Weiterhin kann es beim Wechsel der Atemgasgemische während der Dekompression zu einem Effekt kommen, den man als " isobare Gegendiffusion " bezeichnet. Er hat eher theroetische Bedeutung.
Andererseits hat der Wechsel des Inertgases von He auf N 2 bei der Dekompression den Vorteil, dass der Druckgradient des schnellen Inertgases (He) stark ansteigt, wenn auf N 2 als Inertgas gewechselt wird. Dadurch steigt die Eliminationsrate ebenfalls mit an.
Laut allgemein gültiger Definition liegt ein Nullzeittauchgang dann vor, wenn beim Austauchen keine Dekompressionspausen eingehalten werden müssen. Physikalisch bedeutet dies, dass der "Aufladungszustand" aller Gewebe des Körpers mit Inertgas (Stickstoff/Helium) zu einem bestimmten Zeitpunkt ausreichend niedrig ist und dass eine Druckverminderung des Körpers auf 1 bar (Luftdruck an der Wasseroberfläche) symptomlos toleriert würde wenn eine bestimmte Aufstiegsgeschwindigkeit eingehalten wird.
Dabei werden wohlweislich bestimmte Einzelheiten verschwiegen:
Beim Tauchen kommt es bereits beim Abtauchen und erst recht beim Tauchen in allen Tiefen > 0 m WT zu einer Inertgasaufsättigung der Gewebe. Dadurch wird jeder Tauchgang sofort zu einem Dekompressionstauchgang, wenn auch das sofortige Austauchen immer noch möglich wäre, weil die Gewebe stets eine bestimmte Toleranz gegen Gasblasenbildung bei Druckentlastung aufweisen.
So ist es letztlich möglich, dauernd entlang dieser "Nullzeitgrenze" entlang zu tauchen. Das Verfahren funktioniert so: Ist der Taucher eine bestimmte Zeit auf einer bestimmten Tiefe. Nähert sich die Inertgasaufsättigung der Gewebe langsam dem Wert, der ein sofortiges Austauchen verhindern würde (der Tauchgang also zum Deko-TG würde), so dass in Kürze explizite Stopps unterhalb der Wasseroberfläche nötig wären, so taucht man einfach einige Meter höher und verlangsamt dadurch die weitere Aufsättigung. Diese Spiel kann man theoretisch treiben, bis die Luft in der Flasche leer ist oder man die Wasseroberfläche erreicht hat, wenn auch zwischen 0 und 10 m Wassertiefe die Zunahme der Aufsättigung nicht mehr problematisch wird. Taucht man nach diesem Verfahren. so ist man vordergründig nie eine explizite Dekompressionspflicht eingegangen.
Problematisch bei diesem Verhalten ist jedoch, dass mindestens ein Körpergewebe so aufgesättigt ist, dass es immer kurz vor einer Dekompressionsproblematik steht. Exzessives Nullzeittauchen heißt eigentlich nur, sich an diese kritische Schwelle "heranzutasten", was moderne Dekompressioncomputer mit ihrem integrativen (den Tauchgang abbildenden) Rechenverfahren theoretisch möglich machen, in der Praxis aber eben auch Probleme hervorgebracht können, da das Dekompressionsverhalten verschiedener Menschen höchst unterschiedlich sein kann. Das was für Person A noch tolerabel ist, kann für Person B schon zur Behandlung in der Rekompressionskammer führen.
Allerdings heißt " keine Dekompressionspflicht " natürlich nicht " keine Dekompression ". Die Dekompressionsphase läuft hier nur ohne Planung des Tauchers ab, der sich zwar sicher wähnt, aber trotzdem mit mindestens einem voll aufgesättigtem Gewebe aus dem Wasser kommt, und dabei noch ein gutes Gewissen hat. Der Trick liegt in der Aufstiegsgeschwindigkeit, die so bemessen wird, dass eben doch scheinbar "sofort" ausgetaucht werden kann.
Bei einem regelgerecht durchgeführten Dekompressionstauchgang hat man am Ende der Dekophase den selben Zustand wie nach einem Nullzeit-TG, der an die Grenze der Dekompressionspflicht führte: Mindestens ein vollgesättigtes Gewebe, dass unter den gegebenen äußeren Druckbedingungen noch gerade keine Dekompressionskrankheit erzeugt.
Folgende, häufig geübte, Praxis einen Tauchcomputer zu verwenden, ist also besonders bedenklich , da sie eine hohe Anzahl an Mikrogasblasen hervorbringt:
Tauchen an der Nullzeitgrenze
Dekompressionstauchgänge lassen sich anhand von Dekompressionstabellen durchführen oder mittels Dekompressionscomputern (Tauchcomputer). Sie setzen regelmäßig eine gewissenhafte Tauchgangsplanung voraus, weil der mitgeführte Atemgasvorrat jetzt genau kalkuliert werden muss damit er für die Tauch- und für die Dekompressionsphase ausreichend ist. Insofern unterscheiden sich geplante Deko-TG stark von sog. "Nullzeit-Fun-Dives".
Wird ein Dekompressions-TG durchgeführt, so ist ab einer bestimmten, vorher geplanten, Tauchzeit der Aufstieg einzuleiten. Ob man vertikal, an einer Steilwand, im Freiwasser oder an Geländestrukturen entlang aufsteigt, ist irrelevant, ganz abgesehen davon dass die Techniken des Tarierens beherrscht werden müssen.
Die Aufstiegsgeschwindigkeit zur ersten Dekompressionstufe sollte nicht mehr als 8-10 m/min betragen. Ist man auf der ersten Stufe angekommen, so wird dort die in der Tabelle oder dem Computer ausgewiesene Zeitspanne verweilt und dann zur nächsten Stufe aufgestiegen.
Die Tiefen der jeweiligen Dekompressionsstopps sollten so genau als möglich eingehalten werden. Steigt man zu hoch auf, so wird zuviel Inertgas pro Zeit freigesetzt oder es bilden sich Mikrogasblasen in zu großer Zahl, bleibt man zu tief, wird nicht schnell genug entsättigt.
Eine gewisse Toleranzgrenze ist jedoch auch hier gegeben, man geht davon aus, dass bei einer mittleren Dekompressionspflicht, 2 bis 3 Minuten Unterschreitung der Dekompressionstiefe toleriert werden. Man kann also auch während einer Dekophase kurz Austauchen, um sich z. B. an der Oberfläche zu orientieren.
Würde man den Luftdruck beim Verlassen des Wassers vermindern, könnte es jetzt wegen des größer gewordenen Druckgefälles zwischen Inertgaspartialdruck in den Geweben und Umgebungsdruck doch noch zu einer Dekompressionskrankheit kommen.
Beim Tauchen in hoch gelegen Gebirgsseen ist der Umgebungsdruck jedoch regelmäßig niedriger, so dass die Gewebe vor Verlassen des Wassers weiter entsättigen müssen, als sie das tun müssten, wenn der Umgebungsdruck Normalwerte hätte.
Bergseetauchtabellen und höhenangepasste Computermodelle rechnen daher regelmäßig mit verlängerten Dekompressionszeiten verglichen mit den Tabellen für Meereshöhe. I. d. R. wird man davon ausgehen können, dass ab einer Höhe über NN von > 700 m eine Bergseetabelle zu verwenden ist.
Als max. Aufstiegsgeschwindigkeiten sind anzusetzen:
Wegen der großen Zahl der Blasen können diese dann, wenn in der Lunge angekommen, nicht vollständig über die Lungenbläschen an die Außenluft abgegeben werden. Dies führt einerseits zur Enstehung kleinster Lungenembolien und weiter dazu, dass diese Blasen weiter in den arteriellen Blutkreislauf eintreten, entweder direkt über die Lunge oder über ein Loch in der Herzscheidewand (patent formen ovale, pfo , das bei ca. 30% der menschen vorhanden ist). Außerdem besteht die bei massivem Einströmen von Gasblasen in die Lunge die Gefahr eines auf die Lunge begrenzten Bluthochdruckes, der zum Herzversagen und Kreslaufkollpas führen kann.
Unterschieden werden im Bezug auf die Dekompressionskrankheit folgende Typen:
Zuerst ist der Druckgradient, also das Inertgasgefälle zu erhöhen. Da es sich bei der Inertgaselimination ebenso wie bei der Aufsättigung um einen Diffussionsprozess handelt, ist dafür zu sorgen, dass das Inertgas den Körper möglichst schnell verlassen kann. Dazu wird die Gabe von Reinsauerstoff empfohlen. Aufgrund der Tatsache, dass der Körper durch diese Maßnahme keinen weiteren Stickstoff aufnehmen kann, ist das Druckgefälle (Gradient) vom Köper zur Umgebung maximiert, d. h. der Stickstoff wird mit maximal möglicher Transportrate abgegeben.
Weiterhin sind die im Körper sich befindlichen Gasblasen zu verkleinern. Dies wird durch eine Rekompression in einer Druckkammer erzielt, z. B. auf einen Umgebungsdruck, der einer Wassertiefe von 50m entspricht (6 bar). Von diesem Druck wird langsam, über mehrere Stunden entlastet, zum Schluss unter Atmung von 100% O 2 . Dieser hohe Druck ist deshalb notwendig, weil sich die Gasblasen im Körper nicht in Kugelform manifestieren sondern in länglicher Form sich an die Gefäßwände anlagern. Um diese Blasen so zu verkleinern, dass sie das Gefäß wieder freigeben, ist ein hoher Umgebungsdruck notwendig, weil sich die wegen der Adhäsionskräfte weiter an die Wände des Blutgefäßes anlagern und zuerst in der Länge schrumpfen und dann erst im Durchmesser.
Um die Fließfähigkeit des Blutes zu verbessern ist dem ansprechbaren Patienten ausreichend Flüssigkeit zuzuführen, allerdings wegen der dehydrierenden (wasserentziehenden) Wirkung keinen Alkohol, Kaffee oder Tee.
Keinen Beleg gibt es für den Nutzen der Gabe von Aspirin zum Zwecke der Verbesserung der Fließfähigkeit des Blutes.
Abzulehnen weil
Besteht die Möglichkeit, ein volles Tauchgerät innerhalb weniger Minuten zu erreichen, so kann eine Toleranzzeit von 2 bis 3 Minuten gerechnet werden, in der der Taucher gefahrlos und ohne Symptome einer DCS in das Wasser zurückkehren kann. Sodann ist die gesamte Dekompressionsphase beginnend mit der tiefsten Deko-Stufe erneut zu durchlaufen. Dieses Vorgehen wird als " nachgeholte Dekompression " bezeichnet, im Unterschied zur "nassen Rekompression".
Ist die Zeitspanne außerhalb des Wassers zu lang oder es zeigen sich nach Verlassen des Wassers erste Symptome der DCS, darf nicht wieder abgetaucht werden. Stattdessen ist die Gabe von reinem O 2 und eine ruhige Lagerung angezeigt.
Als Atemgas verwenden wir meistens Luft. Da jedoch die hier geschilderten Gesetze für alle Gemische, die beim Tauchen zum Atmen verwendet werden, anwendbar sind, sprechen wir allgemein von Atemgas , und meinen dabei Luft, Nitrox, Trimix, Heliox etc.
Der englische Arzt William Henry fand Ende des 18. Jh heraus, dass sich eine Flüssigkeit mit einem Gas, das über Ihr liegt, sättigt. Das Gas wird zum Teil in die Flüssigkeit eingelagert (physiklaisch gelöst), und zwar solange, bis diese Flüssigkeit kein weiteres Gas mehr aufnehmen kann, also gesättigt ist.
Wissenschaftliche Bezeichnung für Modellgewebe . Ein Kompatiment entspricht einem gedachten Körpergewebe für Dekompressionsmodelle.
Kleinste Gasblasen, die beim Dekomprimieren entstehen und die wegen ihrer geringen Größe keine physiologischen Probleme hervorrufen, wenn die Anzahl unterhalb eines bestimmten Grenzwertes bleibt. Wird die Anzahl der Mikrogasblasen jedoch zu hoch, so stören sie die Stickstoffabgabe in der Lunge, weil es in der Lunge zu kleinsten Embolien kommt, was zu einer Herabsetzung des Gasaustausches führt. Damit wird die Entsättigung des Körper in Bezug auf das Inertgas verzögert.
Offenes Foramen Ovale (patent foramen ovale)
Dieses Loch in der Herzscheidewand dient dazu, den ungeboren Körper im Mutterleib optimal mit Sauerstoff zu versorgen. Es wächst i. d. R. in den ersten Lebensmonaten zu. Bei ca. 1/3 der Menschen gelingt der Verschluss allerdings nicht vollständig.
(C) 2001/2002 Peter Rachow